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Abstract 
We analyze why it is erroneous to think that a tidal bulge is formed by pulling the water surface 
directly up by a local vertical tidal force. In fact, ocean tides are caused by the global effect of 
the horizontal components of the tidal forces. 
 
1. Introduction  
Ocean tides are dynamic, but the equilibrium tide theory, which was first proposed by Newton in 
his great work Principia, assumes they are always static. Nevertheless, this idealized theory 
explains many features of the ocean tides and is still the easiest model for college students. It is 
suggested on the basis of assuming that the Earth is a perfect sphere with no daily rotation, no 
landmasses and incompressible, frictionless water covers its surface uniformly (before tides 
occur).  

Regarding the cause of a tidal bulge, one may think intuitively that the ocean surface is 
pulled directly upwards by a local vertical tidal force (VTF). Some authors have pointed out this 
is not the case [1, 2] and actually ocean tides are caused primarily by the horizontal components 
of the tidal forces [1 – 4]. The aim of this paper is, under the framework of the equilibrium 
theory, to re-examine this matter by presenting arguments at the college level. Analysis on tides 
can be carried out by the force method or the potential method. We adopt the former since it is 
more prevalent at the introductory level and more advantageous to understand the mechanism of 
the cause.  
 
 
2. The Popular Explanation 
Without loss of generality, we only consider the lunar tides. The gravitational attraction between 
the Earth and the Moon is GMmoonMearth/R2, where G is the universal gravitational constant, R is 
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the centre-to-centre Moon-Earth separation, and Mmoon and Mearth are the masses of the Moon and 
the Earth, respectively. This force acts mutually, so the Moon and the Earth rotate together about 
their common centre of mass (CM). It is noteworthy that when the centre of the Earth revolves 
about CM, any diameter of the Earth will keep its direction relative to distant stars unchanged [1, 
3]. The above mentioned force produces an acceleration of the Earth, aearth = GMmoon/R2. 
Consider that a mass m is put on the Earth’s surface closest to the Moon (the sublunar point, see 
figure 2). The Moon also attracts m and makes it accelerate, amass = GMmoon/(R-RE)2, where RE is 
the radius of the Earth and hence R- RE is the distance between m and the Moon’s centre. Both m 
and the Earth accelerate in the same direction, so as one “sits” on the Earth to see, m accelerates 
at amass - aearth = GMmoon[1/(R-RE)2- 1/R2] ~ 10-6 ms-2 (towards the Moon). When m is relocated 
to the diametrically opposite side of the Earth, i.e. the furthest point from the Moon (the 
antipodal point), its acceleration relative to the Earth becomes amass - aearth = GMmoon[1/(R+RE )2- 
1/R2] ~ -10-6 ms-2 (away from the Moon). In other words, no matter m is put at the sublunar or 
antipodal point, its acceleration seen from the Earth is always directly outward to enable it to 
leave the Earth (actually m does not leave because of its weight, see the last paragraph of this 
section). In this way, the ocean waters are vertically lifted up and two high tides of 
approximately the same size are produced at these two places. Explanations like this are 
commonly found in texts and on the Internet. Because a = F/m, the acceleration 10-6 ms-2 can be 
interpreted as the VTF per unit mass, which is denoted in this paper as γ .  

In mechanics, we know that in an accelerating frame of reference (FR), Newton’s second law 
is applicable only when each observed object is thought to be acted by an inertial (or fictitious) 
force. From the above, we apply a = F/m in an accelerating FR (the Earth accelerates at aearth, it 
is the FR) to deduce a tidal force. So this tidal force must contain an inertial force. Nevertheless, 
ocean water “feels” this inertial force exactly as a real force, just like a passenger in a car 
following a circular track (centripetal acceleration) feels very truly that he or she is pushed 
outwards (by an inertial force of exactly the same type). Simply speaking, when we “sit” on the 
Earth to see, tidal forces can be completely treated as normal real forces. 

So far we have neglected a major force on m, the gravitational pull from the Earth. Weight 
does not contribute to the tidal force, but it plays an essential role in establishing equilibrium. As 
compared with the Earth’s gravity (g = 9.81 ms-2), γ is only about 10-7 of its value. When water 
is piled up, it must be simultaneously counteracted by its own weight. The issue is both the VTF 
and weight are proportional to mass m and, therefore, no matter how high a tidal bulge is, their 
ratio is still 10-7 in 1. In view of this, it is difficult to convince one to believe that such a vertical 
force can produce the ocean tide that is observed in reality. 
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3. Vertical Bulge Caused by Horizontal Force 

 
Figure 1(a) shows part of a static tidal bulge. H and D are, respectively, a higher and lower point 
on the surface, B is the point directly beneath H such that HB is perpendicular to BD. Consider 
two imaginary no-physical-boundaries tubes of cross-sectional area A; one is vertical of length h 
connecting H and B and one is horizontal of length L connecting B and D, as shown in figure 
1(b). The masses of water contained in the vertical and horizontal tubes are m and m’ respectively. 
The water in the vertical tube is influenced by two forces mg and mγ, or equivalently, a 
downward net force m(g – γ) = ρAh(g-γ), where ρ is the density of water. This part of water is 
static, so the excess water pressure set up at its bottom (point B) is ρh(g-γ), which will inevitably 
in turn push the water in the horizontal tube to the right. The water in the horizontal tube is static 
too, so an additional horizontal force must be there to act on the water from D to B to achieve a 
balance. Yes, this is the horizontal component of the tidal force. If we denote this horizontal tidal 
force (HTF) per unit mass as τ, then the excess pressure set up at B by this horizontal force is 
m’τ/A = ρLτ. Provided that there is an overall balance, the condition ρh(g-γ)= ρLτ  must be 
satisfied with different pairs of h and L. Express the condition as h = Lτ/(g – γ)= ( Lτ/g)/(1 – γ/g). 
The term γ/g in the denominator can be safely discarded because γ/g ~ 10-7, therefore  
 

                     h= Lτ
g

 .                                   (1)  

                                       
Note that equation (1) is independent of A, so L is taken as the length of the line segment parallel 
to τ. This line segment is not necessary straight and can be arbitrarily long since the water is 
assumed to be static and ideal. If τ is not constant over L, we can either replacing the numerator 

 
Figure 1. (a) Part of a tidal bulge. (b) Under the condition of static equilibrium, the forces 
involved must satisfy a condition. 
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by an integral or regard τ as the spatial average. Equation (1), which can also be derived by the 
work-energy theorem, is the core of our argument. It simply implies that a tidal elevation (h) is 
produced because of the existence of the horizontal tidal force (τ) over a horizontal distance (L) 
while the vertical tidal force (γ) is legitimately ignored. In addition, γ and τ have the same order 
of magnitude since they are components of the same tidal force. Α considerable tidal bulge is 
formed only when L is large enough because τ << g.   
 
4. Horizontal Tidal Force (HTF) 

 

Figure 2. The two non-collinear forces of magnitudes gmoon, m = GMmoon/Q2 and gmoon, E 

= GMmoon/R2
 are the lunar gravitational attraction per mass on m and on the Earth 

respectively. The vector subtraction of the latter from the former gives the tidal force. 
The sizes of the objects and the distances are not drawn in scale. 

 
Our analysis relies heavily on how the HTFs vary and direct throughout the Earth’s surface. 
Hence, we have to figure out the tidal force at any place on the Earth’s surface. Figure 2 shows a 
unit mass m, which is placed on the Earth’s surface and makes an angle θ with the Moon-Earth 
joining line.  

A basic notion of the ocean tides due to, e.g. the Moon, is that this heavenly object sets up a 
non-uniform gravitational field (force per mass) over the whole Earth, as evidenced by the tidal 
forces per mass found in the section “The Popular Explanation”, i.e. GMmoon/(R ± RE)2- 
GMmoon/R2. Based on the same notion, we can derive the general expression by just modifying 
the particular ones. The first term, GMmoon/(R± RE)2, referring to the lunar gravitational attraction 
per mass on m, should now be changed to GMmoon/Q2, where Q is the distance between m at its 
present position and the Moon’s centre. The second term, GMmoon /R2, referring to the lunar 
gravitational attraction per mass on the Earth, should be the same since it is irrelevant to m. 
Henceforth, we denote these two terms as gmoon, m and gmoon, E respectively. Mathematically, 
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they are no longer subtracted algebraically because they are in general non-collinear. As shown 
in figure 2, g�⃗ moon, m directs towards the Moon’s centre from m while g�⃗ moon, E directs towards 
the Moon’s centre from the Earth’s centre. Therefore, the tidal force is obtained by subtracting 
g�⃗ moon, E from g�⃗ moon, m vectorially. Here, we employ the components method to carry out the 
vector subtraction, in order to see clearly how the horizontal component of the tidal force directs. 

Displace the vector g�⃗ moon, E to m (the dotted line blue arrow in figure 2) for an easier 
comparison between it and g�⃗ moon, m. With the unit mass placed at that particular position shown 
in figure 2, we see that Q < R and therefore gmoon, m > gmoon, E (the inverse square law). The 

horizontal components (relative to the local horizon) of these two forces, in terms of the angles α 
and β defined in figure 2, are gmoon, m 𝑐𝑜𝑠 𝛼 and gmoon, E 𝑐𝑜𝑠 𝛽, respectively. In addition, α < 
β (see figure 2) and hence cosα > cosβ. By combining the two inequalities gmoon, m > gmoon, E 
and cosα > cosβ, we get the HTF per unit mass, τ = gmoon, m 𝑐𝑜𝑠 𝛼 - gmoon, E 𝑐𝑜𝑠 𝛽 
> 0. Therefore, τ  at that point is pointing anticlockwise towards the Moon-Earth line. Such a 
conclusion can be made in the upper hemisphere within the range from the sublunar point (θ = 00) 
to the upper point T at where Q = R. Moreover, the Moon is far away from the Earth as 
compared with the Earth’s radius (R ≈ 60RE), so the point T is practically at the top of the Earth 
(θ for T = 89.50). 

A drawing similar to figure 2, but with the unit mass shifted to the rear side of the upper 
hemisphere, makes evident Q > R , α > β and clockwise HTFs are therefore resulted in this 
region. Because of the up-down symmetry, the HTFs in the lower hemisphere are the mirror 
image of the upper’s. Finally, we obtain a global picture of the HTFs, which is depicted in figure 
3 together with the oval shape of the tidal ocean. Furthermore, a 3D illustration can be created by 
revolving figure 3 about its horizontal axis of symmetry. 

 

 
Figure 3. Ocean tides are produced by the horizontal components of the tidal forces (τ). 
The ocean depth is much exaggerated in the figure.  
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By applying equation (1) to the dotted path HBD in figure 3, we can perceive the reason for 

the surface elevation at H. From the low tide D to the high tide H along arc DB, the HTFs (τ) 
always act in the same direction. In this way, the ocean water is compressed along this angular 
direction and so the underwater pressure builds up gradually and continually over a large-scale 
distance, reaching its maximum at B and hence water is bulged high up to form the high tide 
there. Simply speaking, ocean tides are the manifestations of the global underwater pressure 
change caused by the HTFs. Note that at a high or low tide, the HTF is zero whereas the pressure 
change is the greatest. 

Before an exact calculation, we use equation (1) to estimate h, which is the height difference 
between the high and low tides. As mentioned above, γ and τ are in the same order of magnitude. 
We have already calculated γ ~ 10-6 ms-2 at the two high tides. In equation (1), we simply take τ ~ 
10-6 ms-2, L = length of arc DB = one fourth of the Earth’s circumference = Earth’s radius x (π/2) 
~ 107 m. Thus, we get h = Lτ/g ~ (107)(10-6)/9.8 ~1 m. This estimation is rough but instructive. 
The most determinant factor that makes h discernible is the “one fourth of the Earth’s 
circumference”, the distance τ can act without changing its direction. 

 
5. Expressions for VTF and HTF 
The expressions for the vertical and horizontal components of the tidal force are derived in this 
section, making the theory complete and convenient to those readers who are interested to do 
calculations and analysis of their own. 

As terms defined in figure 2, the HTF per unit mass, τ = gmoon, m 𝑐𝑜𝑠 𝛼 - gmoon, E 𝑐𝑜𝑠 𝛽 and 
the VTF per unit mass, γ = gmoon, m 𝑠𝑖𝑛 𝛼 - gmoon, E 𝑠𝑖𝑛 𝛽, where gmoon, m = GMmoon/Q2 and 
gmoon, E = GMmoon/R2. In carrying out the calculations, we need the following relationships: 

cosα = Rsinθ/Q, sinα = (Rcosθ - RE)/Q, β = π/2 - θ and Q2 =R2 - 2RREcosθ + RE
2(the law of 

cosines). Keeping terms only up to the first order of (RE/R) in the expansions of the expressions, 
we finally obtain 
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DB. Since D and B are equidistant from the Earth’s centre, τ is parallel to arc DB. In equation (1), 
g = GMearth/RE

2 and the numerator Lτ is replaced by a definite integral of equation (2) with 
respect to distance over the arc from D to B. At last, we obtain an expression for h, the height 
difference between the high and low tides, 

                                                 

            h= 3
2

Mmoon

Mearth

RE
4

R3  .             (4) 

 
Equations (2) – (4) agree with the results in the literature [2, 3, 5 – 7]. As we put values into 
equation (4), we get h ~ 0.5m, of which the order of magnitude has been estimated in the 
previous section. 
 
6. Newton’s Wells 

 

Figure 4. Newton devised an ingenious method to derive the tidal height, h. In his method, 
two imaginary water wells are drilled from the ocean surface to the Earth’s centre. The 
ocean depth is much exaggerated in the figure. 
 
Nowadays, texts are still apt to use a method devised by Newton to derive the tidal height. In his 
method, two perpendicular water wells are imagined to be drilled, one runs from a low tide to the 
Earth’s centre and joins the other which runs from the Earth’s centre to a high tide [5], as shown 
in figure 4. Then a mass of water m is transferred from the low tide to the high tide via the two 
wells, the tidal height (h) is obtained by equating the change in gravitational potential energy 
(mgh) to the net work done by the tidal force, of which only the vertical component is involved 
in this case. The tidal forces on m along the two wells are obtained from our equation (3) by 
substituting θ = 900 and 00, respectively, and changing RE to a variable, named as r in figure 4. 
Apparently, this approach contradicts with our claim of the unimportance of the VTF. 
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There is no doubt that only the VTF does work because m is moved along the two 
deep-to-the-Earth’s centre water wells. But in reality these two wells do not exist, they are 
imaginary and only for the good of deriving the tidal height. Our claim applies to the real case: 
ocean water of negligible depth, as compared with the size of the Earth, is restricted only on the 
Earth’s surface. 

Newton’s method derives the correct result because the tidal force, which origins from the 
gravitational attraction, is conservative and so the work done by it is path-independent. In figure 
4, either the angular path L or the path through the two wells is taken, the net work done by the 
tidal force from D to B (or the water pressure difference between D and B) must be the same. 
Remember that only the path L seems to be practically possible. 
 
7. Discussion and Conclusion 
The horizontal components of the tidal forces are responsible for the ocean tides, while their 
vertical counterparts play an insignificant role. There are two reasons for this. First, only the 
latter are counteracted disproportionately by the much larger Earth’s gravity. Secondly, the 
former benefit from the spatial extensions of the shell-like ocean water, whose radial span (~ 
ocean depth) is very limited as compared with its angular span (~ size of Earth). Although the 
horizontal components are as feeble as the vertical, they are compensated with the “one fourth of 
the Earth’s circumference”. 

One may argue if the underwater static pressure really rises continually over an exceedingly 
long distance ~ 107m to produce a tidal bulge ~ 1 m. Of course, this is the scenario resulted from 
and seen as a necessary part of the self-contained equilibrium tide theory. Real ocean tides are 
described more satisfactorily by the dynamic theory. Nevertheless, the reasons listed in the first 
paragraph of this section always prevail, so it is very model-independent to say the horizontal 
components of the tidal forces cause the ocean tides. In the dynamic model, these forces drive 
ocean water move to set up tidal currents to transport water from the low tides to the high tides 
[1 – 4]. 

In short, a tidal force is too feeble to cause a local ocean tide, which is the outcome of the 
global action of the horizontal components of the tidal forces. 
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